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ABSTRACT

LIGHT SCATTERING FROM CORE-SHELL
NANO-STRUCTURES: STRUCTURAL COLORATION

Muhammet Halit DOLAŞ

M.S. in Physics

Supervisor: Assoc. Prof. Dr. Mehmet Bayındır

August, 2013

In this work, we produced kilometer-long semiconducting cylindrical nano-

structures by using a top-to-bottom nano-fabrication technique which was re-

cently developed in our research group. Comparison of commonly used methods

of producing nano-structures such as electrospinning and nano-imprint lithog-

raphy versus iterative thermal size reduction (ISR) is done in terms of unifor-

mity, geometry control, multi-material compatibility, yield and device integrabil-

ity. While the others cannot fulfil all requirements, ISR shows impressive results

in all aspects.

From very beginning to end, all steps of production and characterization of

nano-wires produced by ISR, the design, chalcogenide glass production, preform

preparation, fiber drawing, iterative size reduction, chemical etching and imaging

are explained in details. In addition, production and characterization of nano-

spheres by in-fiber fluid instability which is based on Plateau-Rayleigh instability

is also demonstrated.

Theoretical study on scattering from small particles, Mie scattering, which

is one of the mechanisms for structural coloration together with thin film inter-

ference, multilayer interference, diffraction grating and photonic crystals is done.

Structural coloration due to scattering from small particles is simulated using

Finite Domain Time Difference (FDTD) method and compared with theoretical

results estimated for nano-wire and nano-sphere cases. Results are confirmed

with observation of structural coloration by taking dark field optical microscopy

images of the final products of ISR and in-fiber fluid instability processes.

Keywords: Nanotechnology, Fiber drawing, Nanostructures, Structural col-

oration, Mie scattering.
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ÖZET

IŞIĞIN ÇİFT KATMANLI NANO YAPILARDAN
SAÇILIMI: YAPISAL RENKLENME

Muhammet Halit DOLAŞ

Fizik, Yüksek Lisans

Tez Yöneticisi: Assoc. Prof. Dr. Mehmet Bayındır

Ağustos, 2013

Bu çalşmada kilometrelerce uzunlukta silindirik nano yaplar araştrma grubu-

muzca geliştirilen yeni bir yöntemle elde edildi. Günümüzdeki en iyi nano-

tel üretim yöntemleri olan electrospinning ve nano baskı yöntemleri ile

çalışmalarımızda kullandığımız tekrarlamalı boyut azaltma tekniği, düzenli

üretim, boyut kontrolü, iki veya daha çok maddenin beraber kullanılabilmesi,

üretim miktarı ve cihazlarla beraber çalışabilme başlıkları altında karşılaştırıldı.

Diğer teknikler tüm branşlar söz konusu olduğunda gerekli performansı

sağlayamazken tekrarlamalı boyut azaltma tekniği her açıdan etkileyici sonuçlar

verdi.

En başından son aşamasına kadar, dizayn, çalkojen cam üretimi, başlangıç

formunun hazırlanması, fiber çekimi, tekrarlamalı boyut azaltma, kimyasal

çözümleme ve sonuçların görsel olarak yayınlanması gibi bütün nano-tel üretim

ve karakterizasyon aşamaları, Plateau-Rayleigh kararsızlığına dayalı fiber içi sıvı

kararsızlığı yöntemi ile elde edilmiş nano-kürelerin üretim ve karakterizasyon

aşamaları ile baraber geniş olarak açıklandı.

İnce film kaplamalarından saçılım, iki veya daha fazla madde ile yapılan kapla-

malardan saçılım, saçılım ızgarası ve fotonik kristal yöntemleri ile beraber yapısal

renklenmenin sebeplerinden biri olan küçük partiküllerden saçılım olayı teorik

açıdan incelendi. Nano-tel ve nano-küre durumları için küçük partiküllerden

saçılım yöntemi ile oluşan yapısal renklenme FDTD (sınırlı alan zaman farkı)

metodu ile simüle edildi ve sonuçlar MATLAB ile hesaplanan teorik sonuçlarla

karşılaştırıldı. Tekrarlamalı boyut azaltma yöntemi ile elde edilmiş nano-tel ve

nano-kürelerdeki yapısal renklenme optik mikroskop yardımı ile görüntülendi.

Anahtar sözcükler : Nanoteknoloji, Fiber, Nano yapılar, Yapısal renklenme.
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Chapter 1

Introduction

Colors, arguably the most appealing perfection of nature, the basic cause and an

exciting result of complex structure of human eye, the precious ingredient almost

for all kind of arts are appreciated, wondered, discovered by ages. Elements that

cause coloration become clearer with the discovery of absorbtion and scattering

of light [1]. Not only nonuniform absorbtion for different wavelengths of light

by dyes or pigments [2] [3] but also scattering of light from periodic or quasi

periodic structures cause coloration i.e. structural coloration [4] [5] [6] [7]. Thin

film interference, multilayer interference, diffraction gratings, phonic crystals and

scattering from small particles of sizes comparable to wavelength of light are main

causes for the structural coloration [8] [9] [10] [11]. Although it is not as perfect as

nature, scientists can mimic such structural coloration mechanisms with recently

growing nano-scaled production technologies.

Although in this work we are aiming to observe structural coloration in nano-

scale dielectric materials, light-matter interactions for non-metallic materials at

nano-scale sizes are bound by diffraction limit which is equal to half of the wave-

length of light, the minimum size of the material at which it can affect light

[12] [13]. However, in terms of dielectric materials, absorption and scattering

by small particles that results leaky-mode resonances in the domain of Lorenz-

Mie theory can overcome diffraction limit problem [14]. Also using dielectrics in

nano-structured arrays that can be characterized by an effective medium models

1



[15] or producing dielectrics as periodic structures showing photonic crystal effect

[16] can overcome diffraction limit problem. Guiding light inside a high refrac-

tive index dielectric material at specific wavelength [17] and multiple scattering

phenomenon [18] is also possible for optical usage of dielectrics.

Recent top-down [19] [20] [21] and bottom-up [22] [23] [24] production methods

for nano-structures allow production of functional nano-scaled structures [25].

However, these methods, even the most popular ones as electrospinning or nano-

imprint lithography, cannot fulfil all requirements in terms of alignment [26] [27],

material constraints [28] [29], length [30], uniformity [31] [32], speed and cost

[33] [34], yield and diversity [35]. In this work we report iterative thermal size

reduction (ISR) technique, a novel fabrication method which is superior in all

aspects considered above.

In Chapter 2 of this work, theoretical background of light scattering from

nano-wires and nano-spheres is studied together with the comparison of different

production methods for nano-wires as electrospinning, nano-imprint lithography

and ISR. In Chapter 3, production and characterization of nano-wires and nano-

spheres by ISR is widely explained and results are presented. In Chapter 4,

structural coloration is introduced, theory of scattering from small particles is

connected to structural coloration by estimation of scattering efficiency of nano-

wires and nano-spheres for visible spectrum of light. Scattering efficiency is also

simulated by using finite difference time domain (FDTD) method and results

are compared with theoretical results. Observation of structural coloration in

nano-wires and nano-spheres produced by ISR is presented. In the last chapter,

Chapter 5, summary of work and future studies are discussed.
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Chapter 2

Review

The theory of coloration of absorbtion and scattering from small particles is

first developed in 1908 by Gustav Mie and later named as Mie theory [36]. In

this study, Mie theory is recalled for small particles in several geometries as

sphere, core-shell sphere, wire and core-shell wire starting from solution of wave

equation to the estimation of scattering efficiency. In this chapter, derivation

of electric and magnetic fields (E,H) task is done and in chapter 4 theory is

connected to structural coloration by estimation of scattering efficiency using

computer program based on the theory. Scattering for core-shell sphere and wire

cases are simulated and results are compared with the theoretical results.
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Figure 2.1: Scattering from nano-sphere.

2.1 Scattering From Small Particles: Mie The-

ory

2.1.1 Scattering by Nanospheres

2.1.1.1 Solutions to the vector wave equation

Time harmonic electromagnetic field (E,H fields) in a linear, isotropic and ho-

mogeneous medium (Figure 2.1) must satisfy the wave equations

∇2E + k2E = 0 ∇2H + k2H = 0 (2.1)

where k2 = ω2εµ and divergence of fields must be zero

∇ · E = 0 ∇ ·H = 0 (2.2)

Furthermore, E and H fields are related to each other

4



∇× E = iwµH ∇×H = −iwεE (2.3)

At this point, vector field M is constructed by given scalar function ψ and

constant vector c

M = ∇× (cψ) (2.4)

Since the divergence of the curl of any function vanishes

∇ ·M = 0 (2.5)

Using the vector identities:

∇× (A×B) = A(∇ ·B)−B(∇ · A) + (B · ∇)A− (A · ∇)B (2.6)

∇(A ·B) = A× (∇×B) +B × (∇× A) + (B · ∇)A+ (A · ∇)B (2.7)

we have

∇2M + k2M = ∇× [c(∇2ψ + k2ψ)] (2.8)

So it means that if ψ is a solution of the scalar wave equation then M satisfies

the vector wave equation.

∇2ψ + k2ψ = 0 (2.9)

Let us also define N as a vector function as

5



N =
∇×M

k
(2.10)

N is also satisfies the vector wave equation with zero divergence.

∇ ·N = 0 (2.11)

∇2N + k2N = 0 (2.12)

We also have

∇×N = kM (2.13)

Considering M and N are divergence-free, curl of one is proportional to other

one and both satisfy the vector wave equation, they have all necessary proper-

ties of electromagnetic fields. Therefore our problem of having solutions to field

equations become having solutions to scalar wave equation which is a simpler

problem.

Thus, ψ is called the generating function for the vector harmonics (M,N),

and c is called guiding vector. Since we have spherical symmetry, we choose our

generating function in spherical coordinates and for the guiding vector we choose

the radius r to obtain M as a solution of vector wave equation in spherical

coordinates.

M = ∇× (rψ) (2.14)

The scalar wave equation in spherical coordinates is

1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂ψ

∂θ

)
+

1

r2sinθ

∂2ψ

∂2φ2
+ k2ψ = 0 (2.15)

6



With the separation of variables

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (2.16)

We have

∂2Φ

∂2φ
+m2φ = 0 (2.17)

1

sinθ

d

dθ

(
sinθ

dΘ

dθ

)
+

[
n(n+ 1)− m2

sin2θ

]
Θ = 0 (2.18)

d

dr

(
r2
dR

dr

)
+ [k2r2 − n(n+ 1)]R = 0 (2.19)

constants m and n are determined due to the boundary conditions. For a

given m, the linearly independent solutions to Equation 2.17 are

Φe = cosmφ Φo = sinmφ (2.20)

where e and o denote even and odd solutions. Since ψ is a single valued

function of φ

lim
ν→2π

ψ(φ+ ν) = ψ(φ) (2.21)

we need m to be zero or an integer. (m = 0, 1, 2 · · ·)

The solution of Equation 2.18 is the associated Legendre functions of the

first kind of degree n and order m, Pm
n (cosθ), where n = m,m + 1, · · · and the

orthogonality relations for these functions:

∫ 1

−1
Pm
n (µ)Pm

n′ (µ) dµ = δn′n
2

2n+ 1

(n+m)!

(n−m)!
(2.22)

7



where µ = cosθ.

Let us define a dimensionless variable as ρ = kr and a function Z = R
√
ρ ,so

Equation 2.19 becomes

ρ
d

dρ

(
ρ
dZ

dρ

)
+
[
ρ2 − (n+

1

2
)2
]
Z = 0 (2.23)

The linearly independent solutions of the Equation 2.23 are the Bessel func-

tions of the first kind Jν and the second kind Yν where ν = n+ 1
2
. So, the solutions

of the Equation 2.19 are the spherical Bessel functions

jn(ρ) =

√
π

2ρ
Jn+ 1

2
(ρ) (2.24)

yn(ρ) =

√
π

2ρ
Yn+ 1

2
(ρ) (2.25)

The recurrence relations of Bessel functions are

zn−1(ρ) + zn+1(ρ) =
2n+ 1

ρ
zn(ρ) (2.26)

(2n+ 1)
d

dρ
zn(ρ) = nzn−1(ρ)− (n+ 1)zn+1(ρ) (2.27)

where zn is either jn or yn. The first two orders are

j0(ρ) =
sinρ

ρ
j1(ρ) =

sinρ

ρ2
− cosρ

ρ
(2.28)

y0(ρ) = −cosρ
ρ

y1(ρ) = −cosρ
ρ2
− sinρ

ρ
(2.29)

and the higher orders can be obtained by recurrence relations.

8



Any two linear combination of jn and yn is also a more general solution and

two of such combinations are spacial, the Bessel functions of the third kind i.e.

the spherical Hankel functions,

h(1)n (ρ) = jn(ρ) + iyn(ρ) (2.30)

h(2)n (ρ) = jn(ρ)− iyn(ρ) (2.31)

After introducing the needed functions, let us construct our generating func-

tions that satisfy the scalar wave equations in spherical coordinates.

ψemn = cos(mφ)Pm
n (cosθ)zn(kr) (2.32)

ψomn = sin(mφ)Pm
n (cosθ)zn(kr) (2.33)

where zn is one of the Bessel functions (jn, ynh
(1)
n , h(2)n ). The corresponding

vector spherical harmonics M and N are

Memn = ∇× (rψemn) Momn = ∇× (rψomn) (2.34)

Nemn =
∇×Memn

k
Nomn =

∇×Momn

k
(2.35)

which can be written in broad form as

Memn =
−m
sinθ

sin(mφ)Pm
n (cosθ)zn(ρ)θ̂ − cos(mφ)

dPm
n (cosθ)

dθ
zn(ρ)φ̂ (2.36)

Momn =
m

sinθ
cos(mφ)Pm

n (cosθ)zn(ρ)θ̂ − sin(mφ)
dPm

n (cosθ)

dθ
zn(ρ)φ̂ (2.37)
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Nemn =



zn(ρ)
ρ
cos(mφ)n(n+ 1)Pm

n (cosθ)r̂

+cos(mφ)dP
m
n (cosθ)
dθ

1
ρ
d
dρ

[ρzn(ρ)]θ̂

−msin(mφ)P
m
n (cosθ)
sinθ

1
ρ
d
dρ

[ρzn(ρ)]φ̂

(2.38)

Nomn =



zn(ρ)
ρ
sin(mφ)n(n+ 1)Pm

n (cosθ)r̂

+sin(mφ)dP
m
n (cosθ)
dθ

1
ρ
d
dρ

[ρzn(ρ)]θ̂

+mcos(mφ)P
m
n (cosθ)
sinθ

1
ρ
d
dρ

[ρzn(ρ)]φ̂

(2.39)

2.1.1.2 Expansion of a plane wave in vector spherical harmonics

In our case we are concerned about scattering of a plane wave. The x polarized

plane wave in spherical coordinates is denoted by

Ei = E0e
ikrcosθx̂ (2.40)

where

x̂ = sinθcosφr̂ + cosθcosφθ̂ − sinφφ̂ (2.41)

In terms of vector spherical coordinates we expand Equation 2.40

Ei =
∞∑
m=0

∞∑
n=0

(BemnMemn +BomnMomn + AemnNemn + AomnNomn) (2.42)

since sinmφ is orthogonal to cosm′φ we have Memn is orthogonal to Momn

10



∫ 2π

0

∫ π

0
Mem′n′ ·Momnsinθ dθ dφ = 0 (2.43)

and similarly (Nemn, Nomn) (Momn, Nomn) and (Memn, Nemn) are orthogonal

sets. Also any two vector harmonics with different m are orthogonal to each

other.

In the case of (Memn, Nomn) and (Momn, Nemn) to prove orthogonality we have

m
∫ π

o

(
Pm
n

dPm
n′

dθ
+ Pm

n′
dPm

n

dθ

)
dθ = Pm

n P
m
n′ |π0 (2.44)

Here the associated Legendre function Pm
n is related to Pn as

Pm
n (µ) = (1− µ2)

m
2
dmPn(µ)

dµm
(2.45)

where µ = cosθ. Since Pm
n is related to m’th derivative of Pn, Pm

n vanishes

for θ = 0, π except m = 0 case. Therefore, Equation 2.44 vanishes for all m,n

and n′.

The orthogonality for the remaining cases

∫ 2π

0

∫ π

0
Memn ·Memn′sinθ dθ dφ =

∫ 2π

0

∫ π

0
Momn ·Momn′sinθ dθ dφ = 0 (2.46)

∫ 2π

0

∫ π

0
Nemn ·Nemn′sinθ dθ dφ =

∫ 2π

0

∫ π

0
Nomn ·Nomn′sinθ dθ dφ = 0 (2.47)

where n 6= n′ and m 6= 0. It is required to show that

∫ π

0

(
dPm

n

dθ

dPm
n′

dθ
+m2P

m
n P

m
n′

sin2θ

)
sinθ dθ = 0 (2.48)
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since Pm
n and Pm

n′ both satisfy Equation 2.18, after some mathematical ma-

nipulation we have

2sinθ

(
dPm

n

dθ

dPm
n′

dθ
+m2P

m
n P

m
n′

sin2θ

)
=


[n(n+ 1) + n′(n′ + 1)]Pm

n P
m
n′ sinθ

+ d
dθ

(
sinθ

dPm
n′
dθ
Pm
n + sinθ dP

m
n

dθ
Pm
n′

) (2.49)

and together with the orthogonality relations for Pm
n , Equation 2.48 is proved.

Based on these orthogonality relations, the coefficients in the expansion Equa-

tion 2.42 are of the form:

Bemn =

∫ 2π
0

∫ π
0 Ei ·Memnsinθ dθ dφ∫ 2π

0

∫ π
0 |Memn|2sinθ dθ dφ

(2.50)

and similarly for Bomn, Aemn and Aomn. With the orthogonality of sin and

cos, Equations 2.36, 2.39 and 2.41 follows that Bemn = Aomn = 0 for all m and n

and the other coefficient vanishes except m = 1. Since the incident field is finite

at the origin, we reject yn. We will use superscript (1) for the vector harmonics

to show them radial dependance of generating function is specified by jn. So, the

incident field has the form:

Ei =
∞∑
n=1

(BolnM
(1)
oln + AelnN

(1)
eln) (2.51)

Using Equation 2.36 one can evaluate the integral at the denominator in the

expression for Boln. However we have the integral at the nominator:

∫ π

0

d

dθ
(sinθP l

n)eiρcosθ dθ (2.52)

from Equation 2.45,

P l
n =
−dPn
dθ

(2.53)
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where Legendre polynomials of degree n satisfy the Equation 2.18

d

dθ

(
sinθ

dPn
dθ

)
= −n(n+ 1)Pnsinθ (2.54)

So, Equation 2.52 is proportional to

∫ π

0
eiρcosθPnsinθ dθ (2.55)

For the last step we will use Genenbauer’s generalization for the Poisson’s

integral.

jn(ρ) =
i−n

2

∫ π

0
eiρcosθPnsinθ dθ (2.56)

So for the Boln

Boln = inE0
2n+ 1

n(n+ 1)
(2.57)

For the Aemn our task is easier. When we are faced with the integral

∫ π

0
P l
nsinθe

iρcosθsinθ dθ (2.58)

using the Equations 2.53, 2.54 and 2.56 and integration by parts we have the

solution:

2n(2n+ 1)jn(ρ)in

iρ
(2.59)

For the case of the integral

∫ π

0

(
cosθ

dP l
n

dθ
+

P l
n

sinθ

)
eiρcosθsinθ dθ (2.60)
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which is result of first multiplying Equation 2.56 by ρ and differentiating it

with respect to ρ. After a bit of algebra we have

2n(2n+ 1)in

iρ

d

dρ
(ρjn) (2.61)

Then Aeln follows

Aeln = iE0i
n 2n+ 1

n(n+ 1)
(2.62)

and the incident field Ei becomes

Ei = E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
(M

(1)
oln − iN

(1)
eln) (2.63)

2.1.1.3 Internal and scattered fields

Suppose we have incident x-polarized plane wave as denoted in the Equation 2.63.

Corresponding H field is obtained by curl of E field as

Hi =
−k
ωµ

E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
(M

(1)
eln + iN

(1)
oln) (2.64)

For the scattered fields (Es, Hs) and the internal fields (E1, H1) we have the

boundary conditions

(Ei + Es − E1)× r̂ = (Hi +Hs −H1)× r̂ = 0 (2.65)

Solving for inside fields (E1, H1), due to the same reasons above, all the coef-

ficients of vector harmonics vanishes except m = 1 and we take jn(k1r) where k1

is the wave number in sphere.
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E1 =
∞∑
n=1

En(cnM
(1)
oln − idnN

(1)
eln) (2.66)

H1 =
−k
ωµ1

∞∑
n=1

En(dnM
(1)
eln + icnN

(1)
oln) (2.67)

where En = inE0(2n + 1)/(n(n + 1)) and permeability of sphere denoted by

µ1.

In the outside region, yn is also valid as jn so, in the solution we use Hankel

functions h1n and h2n of order ν

H(1)
ν (ρ) ∼

√
2

πρ
ei[ρ−

νπ
2
−π

4
]
∞∑
m=0

(−1)m(ν,m)

(2iρ)m
(2.68)

H(2)
ν (ρ) ∼

√
2

πρ
e−i[ρ−

νπ
2
−π

4
]
∞∑
m=0

(ν,m)

(2iρ)m
(2.69)

where (ν,m) = Γ(ν + m + 1/2)/(m!Γ(ν − m + 1/2)) and Γ is the Gamma

function. So, asymptotically, Equations 2.68 and 2.69 behave as

h(1)n (kr) ∼ (−i)neikr

ikr
kr >> n2 (2.70)

h(2)n (kr) ∼ −i
ne−ikr

ikr
kr >> n2 (2.71)

Here h(1)n corresponds to an outgoing wave while h2n corresponds to an incoming

wave. Therefore, for the asymptotic case we just need to have outgoing wave in

the region outside of the sphere so h2n term should be neglected.

For the asymptotic case, an expression of the derivatives of h1n is required. It

follows from
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d

dρ
zn =

nzn−1 − (n+ 1)zn+1

2n+ 1
(2.72)

and together with the Equation 2.70 we have

dh(1)n
dρ
∼ (−i)neiρ

ρ
(ρ >> n2) (2.73)

The scattered fields are therefore:

Es =
∞∑
n=1

En(ianN
(3)
eln − bnM

(3)
oln) (2.74)

Hs =
k

ωµ

∞∑
n=1

En(ibnN
(3)
oln + anM

(3)
eln) (2.75)

Where we use the superscript (3) to show the radial dependance of the gen-

erating function is specified by h1n.

2.1.2 Scattering by Core-Shell Nano-Spheres

Figure 2.2: Scattering from core-shell nano-sphere.
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In this section we develop mathematical formulations for scattering from core-

shell nano-sphere (Figure 2.2) which has inner radius a and outher radius b.

Suppose we have incident electromagnetic field as described in Equations 2.63

and 2.64. Resulting electromagnetic field for the region r < a, (E1, H1), is given

in Equations 2.66 and 2.67 and for the region r > b, (Es, Hs), is given in Equations

2.74 and 2.75. Electromagnetic field for the only remaining region b < r < a,

(E2, H2) is must be expanded as

E2 =
∞∑
n=1

En(fnM
(1)
oln − ignN

(1)
eln + vnM

(2)
oln − iwnN

(2)
eln) (2.76)

H2 = − k2
wµ2

∞∑
n=1

En[gnM
(1)
eln + ifnN

(1)
oln + wnM

(2)
eln + ivnN

(2)
oln] (2.77)

where the vector harmonics denoted by superscript (2) are generated by func-

tions of the form denoted in the Equations 2.32 and 2.33 with redial dependance

yn(k2r), since jn and yn are both finite in this region. The boundary conditions

(E2 − E1)× r̂ = 0 (H2 −H1)× r̂ = 0 where r = a (2.78)

(Es + Ei − E2)× r̂ = 0 (Hs +Hi −H2)× r̂ = 0 where r = b (2.79)

yield the eight equation with coefficients an bn cn dn fn gn vn wn.

fnm1ψn(m2x)− vnm1Xn(m2x)− cnm2ψn(m1x) = 0 (2.80)

wnm1X
′
n(m2x)− gnm1ψ

′
n(m2x)− dnm2ψ

′
n(m1x) = 0 (2.81)

vnµ1X
′
n(m2x)− fnµ1ψ

′
n(m2x)− cnµ2ψ

′
n(m1x) = 0 (2.82)
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gnµ1ψn(m2x)− wnµ1Xn(m2x)− dnµ2ψn(m1x) = 0 (2.83)

m2ψ
′
n(y)− anm2ξ

′
n(y)− gnψ′n(m2y) + wnX

′
n(m2y) = 0 (2.84)

m2bnξn(y)−m2ψn(y)fnψn(m2y)− vnXn(m2y) = 0 (2.85)

µ2ψn(y)− anµ2ξn(y)− gnµψn(m2y) + wnµXn(m2y) = 0 (2.86)

bnµ2ξ
′
n(y)− µ2ψ

′
n(y) + fnµψ

′
n(m2y)− vnµX ′n(m2y) = 0 (2.87)

where m1 and m2 are refractive indices of core and coating part respectively

relative to surrounding medium, µ, µ1 and µ2 are permeabilities of the surround-

ing medium, core and coating part respectively. x = ka and y = kb. The

Riccati-Bessel function Xn(z) = −zyn(z).

2.1.3 Scattering by Core-Shell Nano-Wires

Again we start with the same arguments as we did for the spherical case from

the scalar wave equation ∇2ψ + k2ψ = 0 but this time we consider cylindrical

coordinates

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2
∂2ψ

∂φ2
+
∂2ψ

∂z2
+ k2ψ = 0 (2.88)

With the separation of variables we have

ψn(r, φ, z) = Zn(ρ)einφeihz (n = 0,±1, · · ·) (2.89)
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where ρ = r
√
k2 − h2 and Zn is the solution for the Bessel equation

ρ
d

dρ

(
ρ
d

dρ
Zn

)
+ (ρ2 − n2)Zn = 0 (2.90)

Linearly independent solutions to the Equation 2.90 are Bessel functions of

the first, Jn and second kind, Yn. Vector cylindrical harmonics generated from

the Equation 2.89 are:

Mn = ∇× (ẑψn) Nn =
∇×Mn

k
(2.91)

where the pilot vector taken as ẑ which is parallel to cylinder axis. In broader

form vector harmonics are:

Mn =
√
k2 − h2

(
in
Zn(ρ)

ρ
r̂ − Z ′n(ρ)φ̂

)
ei(nφ+hz) (2.92)

Nn =

√
k2 − h2
k

(
ihZ ′n(ρ)r̂ − hnZn(ρ)

ρ
φ̂+
√
k2 − h2Zn(ρ)ẑ

)
ei(nφ+hz) (2.93)

The orthogonality of vector harmonics follows

∫ 2π

0
Mn ·M∗

n dφ =
∫ 2π

0
Nn ·N∗m dφ =

∫ 2π

0
Mn ·N∗m dφ = 0 (2.94)

Let us consider an infinite core-shell wire with inner radius a and outer radius

b which is illuminated by a incident plane wave denoted as Ei = E0e
ikî·x and

the propagation direction î = −sinζx̂ − cosζẑ where ζ is the angle between

cylinder axis and the incident wave. In this case we have two possible orthogonal

polarization state. Electric field is polarized parallel or perpendicular to the xz

plane.

Case1: Ei is parallel to the xz plane (TM case)
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We expend E

Ei = E0(sinζẑ − cosζx̂)e−ik(rsinζcosφ+zcosζ) (2.95)

in terms of vector cylindrical harmonics but to have finite solution at r = 0

we need to exclude Yn from the radial part of the solution. Also it is clear that

the h from the Equation 2.89 must be −kcosζ. Thus

Ei =
∞∑

n=−∞

[
AnM

(1)
n +BnN

(1)
n

]
(2.96)

where the vector harmonics are generated from Jn(krsinζ)einφe−ikzcosζ and to

find coefficients An and Bn we need to use orthogonality of vector harmonics in

which we need to evaluate the integral equations:

I(1)n =
∫ 2π

0
e−i(nφ+ρcosφ) dφ (2.97)

I(2)n =
∫ 2π

0
e−i(nφ+ρcosφ)cosφ dφ (2.98)

I(3)n =
∫ 2π

0
e−i(nφ+ρcosφ)sinφ dφ (2.99)

where ρ = krsinζ. From the representation of Jn(ρ) in the integral form

Jn(ρ) =
i−n

2π

∫ 2π

0
ei(nφ+ρcosφ) dφ (2.100)

it follows that I(1)n = 2π(−i)nJn(ρ) and differentiating it we obtain I(2)n =

2πi(−i)nJ ′n(ρ). We obtain third integral by

2iI(3)n = I
(1)
n−1 − I

(1)
n+1 (2.101)
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and using the identity

2nZn
ρ

= Zn−1 + Zn+1 (2.102)

we have I(3)n = 2π(−i)nJn(ρ)n/ρ and using these integrals we have

An = 0 Bn =
E0(−i)n

ksinζ
(2.103)

Therefore the expansion of Ei follows as

Ei =
∞∑

n=−∞
EnN

(1)
n Hi =

−ik
ωµ

∞∑
n=−∞

EnM
(1)
n (2.104)

where En = E0(−i)n/ksinζ.

The boundary conditions are:

(E2 − E1)× r̂ = 0 (H2 −H1)× r̂ = 0 where r = a (2.105)

(Es +Ei−E2)× r̂ = 0 (Hs +Hi−H2)× r̂ = 0 where r = b (2.106)

To satisfy continuity at the boundaries, the separation constant h in the wave

equation must also be −kcosζ. Finiteness at r = 0 requires to use Jn as the ap-

propriate Bessel function and the generating functions for the core field, (E1, H1)

are Jn(kr
√
m2 − cos2ζ)einφe−ikzcosζ where m is the relative refractive index of the

core. Corresponding expansions are:

E1 =
∞∑

n=−∞
En

[
gnM

(1)
n + fnN

(1)
n

]
(2.107)
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H1 =
−ik1
ωµ1

∞∑
n=−∞

En
[
gnN

(1)
n + fnM

(1)
n

]
(2.108)

and for the shell field, (E2, H2), we also use Yn which is also finite in the shell

region

E2 =
∞∑

n=−∞
En

(
gnM

(2j)
n + fnN

(2j)
n + vnM

(2y)
n + wnN

(2y)
n

)
(2.109)

H2 =
−ik
ωµ

∞∑
n=−∞

En
(
fnM

(2j)
n + gnN

(2j)
n + wnM

(2y)
n + vnN

(2y)
n

)
(2.110)

For the Equation 2.90, the Hankel functions, H(1)
n = Jn + iYn and H(2)

n =

Jn − iYn are also the linearly independent solutions which are asymptotically:

H(1)
n (ρ) ∼

√
2

πρ
eiρ(−i)ne−iπ/4 |ρ| >> n2 (2.111)

H(2)
n (ρ) ∼

√
2

πρ
eiρineiπ/4 |ρ| >> n2 (2.112)

Therefore the outgoing scattering wave, (Es, Hs):

Es = −
∞∑

n=−∞
En

[
bn1N

(3)
n + ian1M

(3)
n

]
(2.113)

Hs =
ik

ωµ

∞∑
n=−∞

En
[
bn1M

(3)
n + ian1N

(3)
n

]
(2.114)

must be H(1)
n (krsinζ)einφe−ikzcosζ .

Case2: Ei is perpendicular to the xz plane (TE case)

In this case, Ei = E0ŷe
−ik(rsinζcosφ+zcosζ) and the expansion of incident field is:
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Ei = −i
∞∑

n=−∞
EnM

(1)
n (2.115)

The curl of it gives the magnetic field

Hi =
−k
ωµ

∞∑
n=−∞

EnN
(1)
n (2.116)

and after the same process we had for case1, the fields are:

E1 = −i
∞∑

n=−∞
En

(
cnM

(1)
n + dnN

(1)
n

)
(2.117)

H1 =
−k1
ωµ1

∞∑
n=−∞

En
(
cnN

(1)
n + dnM

(1)
n

)
(2.118)

E2 = −i
∞∑

n=−∞
En

(
gnM

(2j)
n + fnN

(2j)
n + vnM

(2y)
n + wnN

(2y)
n

)
(2.119)

H2 =
−k2
ωµ2

∞∑
n=−∞

En
(
fnM

(2j)
n + gnN

(2j)
n + wnM

(2y)
n + vnN

(2y)
n

)
(2.120)

Es =
∞∑

n=−∞
En

(
bn2N

(3)
n + ian2M

(3)
n

)
(2.121)

Hs =
k

ωµ

∞∑
n=−∞

En
(
ibn2M

(3)
n + an2N

(3)
n

)
(2.122)

Here is the bare forms of M and N wave-vectors of all three regions for the

core-shell nano-wire.

M i
n = ksinγ

(
in
Jn(krsinγ)

krsinγ
r̂ − J ′n(krsinγ)φ̂

)
ei(nφ−kzcosγ) (2.123)
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N i
n =



sinγ − ikcosγJ ′n(krsinγ)r̂

+kncosγ Jn(krsinγ)
krsinγ

φ̂

+ksinγJn(krsinγ)ẑ


ei(nφ−kzcosγ) (2.124)

M3
n = ksinγ

(
in
H1
n(krsinγ)

krsinγ
r̂ −H ′1n (krsinγ)φ̂

)
ei(nφ−kzcosγ) (2.125)

N3
n =



sinγ − ikcosγH ′1n (krsinγ)r̂

+kncosγH
1
n(krsinγ)
krsinγ

φ̂

+ksinγH1
n(krsinγ)ẑ


ei(nφ−kzcosγ) (2.126)

M1
n = k1sinγ

inJn(kr
√
m2

1 − cos2γ)

k1rsinγ
r̂ − J ′n(kr

√
m2

1 − cos2γ)φ̂

 ei(nφ−kzcosγ)
(2.127)

N1
n =



sinγ − ikcosγJ ′n(kr
√
m2

1 − cos2γ)r̂

+k1ncosγ
Jn(kr
√
m2

1−cos2γ)
k1rsinγ

φ̂

+k1sinγJn(kr
√
m2

1 − cos2γ)ẑ


ei(nφ−kzcosγ) (2.128)

M2j
n = k2sinγ

inJn(kr
√
m2

2 − cos2γ)

k2rsinγ
r̂ − J ′n(kr

√
m2

2 − cos2γ)φ̂

 ei(nφ−kzcosγ)
(2.129)
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N2j
n =



sinγ − ik2cosγJ ′n(kr
√
m2

2 − cos2γ)r̂

+k2ncosγ
Jn(kr
√
m2

2−cos2γ)
k2rsinγ

φ̂

+k2sinγJn(kr
√
m2

2 − cos2γ)ẑ
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2.2 Fabrication Techniques for Producing Nano-

Wires

Undeniably, nano-wires are one of the most practised nano-structured material

types [33] [34]. Recent studies result remarkable growth in producing complex

nano-wire structures [22] [23]. However, in terms of repeatability and device inte-

gration, serious development is required [37] [38] [39]. Here is the comparison of

popular production methods for nano-wires as electrospinning and nano-imprint

lithography versus our novel method ISR.

Electrospinning is a solvent dependent method which uses both electrospray-

ing and dry spinning to create fibers with micro-sized or nano-sized diameters [40].

Process starts with applying high voltage to a liquid droplet. When droplet be-

come charged, because of electronic repulsion, surface tension cannot keep droplet

in sphere form and droplet stretches. At a certain point, liquid stream erupts from

the droplet forming a cone called Taylor Cone. If the cohesion forces that keep

liquid intact is strong enough, liquid stream does not break and charged liquid

forms a jet. As the jet dries to form fiber, charges move to the surface of the fiber

and fiber is elongated because of whipping process caused by electrostatic forces

till it reaches to the grounded target. Elongation and thinning results nano-scale

fibers [41] (Figure 2.3 and 2.4).

Figure 2.3: A diagram that shows fiber production by electrospinning.
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Figure 2.4: A SEM image that shows fibers produced by electrospinning [42].

Nano-imprint lithography is also a solvent dependent method which creates

nano-scale patterns by mechanical deformation of the imprint resist. It has two

basic steps. In first step, a mold with nano-structures that we want onto it is

pressed into a thin resist layer which is on the substrate. After removal of the

mold we have our structures on the resist layer. In the second step, an anisotropic

etching method as RIE (Reactive Ion Etching) is used to remove resist layer in

the compressed field. After this step pattern is transferred into the entire resist

[43] [44] (Figure 2.5 and 2.6).
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Figure 2.5: A schematic diagram shows nano-imprint lithography [43] (1) im-
printing using a mold (2) removal of mold (3) pattern transfer using anisotropic
etching to remove residue resist in the compressed areas.

Figure 2.6: A SEM image that hows fibers produced by nano-imprint lithograpy
[45].

Although these methods are appropriate to produce polymer fibers, when con-

sidering nano-wire aspect ratio, uniformity, size and geometry control, yield and

device integrability, these methods are not superior (Table 2.1). Using electro-

spinning, nanowires with high aspect ratio and with high yield can be produced

but in terms of uniformity and geometry control, electrospinning is not an ap-

propriate method. Also by nano-imprint lithography, uniform nano-wires can be

produced with tunable diameters but, in terms of multi-material compatibility

and yield, nano-imprint lithography is also not an optimum technique. Unlike
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these two methods, ISR method which is widely described in chapter 3, can be

used to produce nano-wires with high aspect ratio, excellent uniformity, desired

geometry and with high yield [46] [47] [48].

Electrospinning Lithography ISR
Aspect Ratio Excellent Poor Excellent
Uniformity Poor Excellent Excellent
Size Control Good Excellent Excellent
Geometry Control Poor Excellent Excellent
Multi Material Compatibility Poor Poor Excellent
Yield Excellent Poor Excellent
Large Area Device Integrability Poor Good Excellent

Table 2.1: Quality comparison of different production methods for nano-wires.
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Chapter 3

Production and Characterization

of Micro and Nano-Structures

3.1 Preparation of Macroscopic Preform

The macroscopic shape of the fiber before thermal drawing process is called pre-

form. Preparation of preform is the most crucial step of fiber production process

since a damage occurs in the preform will inevitably be observed throughout the

fiber. A preform generally has cylinder shape with 2 − 3 centimeters diameter

and 15− 35 centimeter length (Figure 3.1). Materials used in preform must have

nearly same glass transition temperatures since thermal size reduction process

will be performed at this temperature (Figure 3.2).
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)

(b)

(a)

Figure 3.1: A preform (a) before fiber drawing process (b) after fiber drawing
process.

3.1.1 Preform Design

In this study, designed preform has three main parts, core, cladding and jacket.

Jacket part consists of polymer. By arranging its diameter, jacket will let us

reduce the diameter of preform as we want. Simply, for reduction factor of 100,

to obtain fiber with 300 µm diameter we arrange jacket part to obtain outer

preform diameter of 30 mm. Also it keeps cladding and core part safe from any

outer effects. Cladding part is formed of chalcogenide glass. Here we could use

simply another polymer to see structural coloring effect but we choose to use

chalcogenide glass due to its useful properties that will mentioned later in this

work. Cladding part is the main part in which we observe structural coloring.

As a core, again we use polymer. Polymer core provide us to have much longer

nano-wires by supporting chalcogenide glass cladding part. Also it allows the

formation of nano-sized tubes that we will mention in chapter 5 as future work.

To obtain desired preform, we produce a polymer rod and a chalcogenide glass

tube that has core diameter same as diameter of polymer rod. Then jacket part

is obtained by polymer rolling and finally with the consolidation we will have our

preform ready to use (Figure 3.3).
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Figure 3.2: Dynamic Scanning Calorimetry (DSC) data shows the glass transition
temperatures of materials used to draw fibers.

(a)

Figure 3.3: (a) Preform design (b) an optic microscopy image of produced pre-
form.

3.1.2 Glass Tube Production

Chalcogenide glasses (Figure 3.5) have some superior properties as high refractive

index, low phonon energy, high optical nonlinearity. In our work As2Se3 is chosen

as a chalcogenide glass. The average refractive index of bulk As2Se3 in visible

spectrum is measured as 3.25 by ellipsometer (Figure 3.4).

Due to its high refractive index As2Se3 is optically suitable material to observe

structural coloring due to the resonant Mie scattering. Also for the future work

as supercontinuum generation which will be explained in chapter 5, As2Se3 is an

optimum material since it has one of the highest optical nonlinearity property.
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Figure 3.4: (n,k) values of As2Se3 measured by ellipsometer.

Bulk As2Se3 glass is first pulverized and after mass measurement, desired

amount of material (25 gr in our case) is inserted into the quartz tube with

appropriate diameter. Open end of the quartz tube is connected to a vacuum

setup which consists of mechanical and turbo vacuum pumps. First, mechanical

vacuum pump is operated to achieve vacuum in the range of 10−3 torr and As2Se3

is melted to get rid of extra volume by heating the quartz tube with the bunsen

flame. Then, turbo pump is operated to achieve vacuum in the range of 10−6 torr.

A liquid nitrogen trap placed before the inlet of turbo pump to protect its knives.

When the whole vacuum system become static, bunsen flame is used to heat the

quartz tube at a certain point close to the open end and stretching force is applied

by pulling from the ends to seal the quartz tube by necking. At the end, quartz

ampoule containing As2Se3 is obtained.

Obtained quartz ampoule is heated by the increment of 2◦C per minute to

750◦C and kept at this temperature over 10 hours in the furnace. Over-heated

ampoule is rocked for 30 minute and fixed to a rotator machine (Figure 3.6)

right after taking off the rocking furnace (Figure 3.7). Rotator machine rotates

ampoule which contains melted As2Se3 around horizontal axis to have As2Se3

glass tube as it cooling down below melting point. After cooling, solid As2Se3
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Figure 3.5: Pieces of chalcogenide glasses. Orange=As2S3 (Arsenic sulfide)
Black=As2Se3 (Arsenic selenide).

tube extracted by breaking the quartz ampoule (Figure 3.8).

Figure 3.6: Rotator Machine.
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(a)

(b)

Figure 3.7: (a) Rocking furnace. (b) Quartz ampoule containing melted As2Se3.

3.1.3 Polymer Rolling and Consolidation

First, a teflon sheet that is cleaned by methanol is rolled around a cylindrical

metal rod and fixed with vacuum tape to avoid polymer to stick metal rod when

consolidating and also to obtain desired core diameter which is just enough for

As2Se3 tube to enter. Then polymer sheet, PES in our case, is cleaned, prepared

in desired sizes and kept one night in vacuum oven at 100◦C to get rid of water

vapour and then tightly rolled by hand around the metal rod that teflon sheet

rolled onto it till reaching intended preform diameter. The last layer of polymer

sheet is fixed with vacuum tape and whole preform is slightly covered with one

layer of teflon band to avoid dirt. Prepared preform is placed in the consolidation
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Figure 3.8: As2Se3 tubes after extracting from quartz ampoule.

furnace (Figure 3.9) and heated with 15◦C per minute rate from room tempera-

ture to 180◦C. After waiting 3 hours at 180◦C, heating continued with 2◦C per

minute rate to 255◦C and at this temperature, preform is kept 35 minutes and

without waiting it to cool down slowly in the furnace, preform is removed and

cooled down rapidly in room temperature. Rapid cool down is important to have

materials in amorphous state. Then, the metal rod together with the teflon sheet

is removed and As2Se3 glass tube placed at the core. Using extra, similarly pre-

pared polymer (PES) preform, a polymer rod that has same diameter with inner

diameter of As2Se3 glass tube is obtained at turning machine and placed at the

core of As2Se3 glass tube. Finally, our preform is ready with intended design

(Figure 3.10).

3.2 Production of Core-Shell Nano-Wires by

ISR Technique

Thermal size reduction process is performed by using fiber tower (Figure 3.11)

which basically consists of a tube furnace where its axis is positioned perpendic-

ular to the ground, a stage to hang and to move preform, a capstan that provide

the required uniform force to draw fiber and a computer that controls stage and

capstan movements and shows data from sensors that measure thickness of fiber

and pressure applied on fiber.
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Figure 3.9: Consolidation Furnace.

Prepared preform is drilled from the ends through its diameter and one end is

connected to an adapter that provides us to hang preform to the moving stage of

the fiber tower. A mass is hanged to the other end to apply initial pulling force to

start drawing process while capstan is not available to use. Then preform which

is hanged to the moving stage of the fiber tower transferred into the furnace

and centered. Open ends of furnace is closed to stabilize inside temperature.

Furnace is heated to 180◦C with 15◦C per minute rate and without waiting,

heating continued with 2◦C per minute rate till drawing process starts. In our

Glass tube

Polymer Rolling & Consolidation Thermal Size Reduction (Fiber Drawing)

Figure 3.10: A model that shows polymer rolling & consolidation and fiber draw-
ing processes.
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(a) (b)

Figure 3.11: (a) A photograph of fiber tower.(b) A model that shows elements of
fiber tower.

case drawing starts at 295◦C. After drawing starts, we get rid of hanged mass

and the end of the fiber is connected to capstan. To avoid to break fiber, the

stage that holds preform is moved towards to ground with very low rates in the

order of few millimeters per minute. Adjusting temperature and the velocity of

the stage and the capstan, drawing process is continued with constant pressure

so as to obtain fiber with uniform intended diameter.

After having first step fibers as described above, second step fibers are ob-

tained by similar drawing process but this time when we prepare preform, in-

stead of polymer core and glass cladding, we prepare a bundle of first step fibers

and after polymer rolling and consolidation process we place that bundle into

the core of preform. Then fiber drawing process performed to have second step

fibers. Similarly third step fibers are obtained using a bundle of fibers from sec-

ond step fibers. This method which is inspired by Taylor wire drawing process

[49] is named as ISR process. [47] (Figure 3.12).
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Glass

Polymer

Figure 3.12: A model that shows iterative thermal size reduction technique.

3.3 Production of Core-Shell Nano-Spheres by

in-Fiber Fluid Instability

In nature, everything tries to minimize its potential energy and in the case of

fluid drops, the minimum energy state is a sphere since sphere comes with the

minimum surface area and correspondingly the minimum surface potential energy

due to the surface tension i.e. the Plateau-Rayleigh instability . Although our

fibers are stable at room temperatures, when temperature is raised near melting

point, they are instable because fiber drawing process is in high temperatures and

then sudden cooling down of fibers in room temperature results a forced state

[50] [51]. Since the melting point of the PES is higher then the melting point of

As2Se3 glass, at the temperatures in between these two melting points, As2Se3

become fluid and tries to minimize its potential by forming spheres in the fiber

(Figure 3.13).

In our case, because of our preform design, we have polymer also in the core.

Therefore, when temperature is increased to a point between the melting points

of polymer and As2Se3 using consolidation furnace, As2Se3 becomes fluid and
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(a) (b)

Figure 3.13: (a) A model that shows the process of obtaining spheres in-fiber by
heating. (b) An actual fiber photograph which include spheres [50].

tries to form spheres but polymer, in the core, in fact it is softened but since it is

not melted, resists the force that applied by As2Se3 glass to form spheres. If we

try to exceed the melting temperature of polymer then fiber breaks. To observe

this effect in our design we tried to expose fibers to a temperature around melting

point of the polymer without exceeding it and we succeeded to obtain in-fiber

spheres for second and third step fibers. Since the resisting force is higher for the

first step fibers because of the larger sizes, we cannot have spheres for the first

step fibers.

To obtain in-fiber spheres, two kind of samples are prepared. One of them is

fixed with vacuum bands so it is not permitted to decrease in length while the

other one is free standing. Spheres created by the fixed fiber have almost same

diameters with the initial diameter of cladding and for the free standing fibers,

spheres are formed with diameters almost two times bigger then the original

cladding diameter.

3.4 Characterization of Nano-Structures

For samples from all three steps of fibers, chemical etching process is done using

Dicloromethane (DCM) solution. DCM etches polymer while it is harmless to

As2Se3 glass. Therefore, at the end, uniform As2Se3 glass tubes are expected

to be obtained (Figure 3.14 and 3.17 3.25). Using resin solution with hardener

solution together with amounts 15:1, a mixture is prepared, samples from all
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three steps are embedded into this mixture and exposed to UV light source to

solidify. Solidified samples are cut by microtome and cross-sections are imaged by

SEM (Figure 3.15, 3.18 and 3.22). After obtaining in-fiber spheres from second

and third steps, fibers are again buried to resin-hardener mixture and cut by

microtome. Images that shows As2Se3 spheres encapsulating polymer core are

taken by SEM (Figure 3.16, 3.19 and 3.23). Also etching process is done for

second and third step fibers that have spheres and free standing spheres are

imaged by SEM (Figure 3.20 and 3.24). Here is the results for all 3 steps.

Figure 3.14: (a) SEM image of first step fiber after burying to resin and cutting
by microtome. Polymer at the core and the jacket and tube chalcogenide glass
are successfully obtained. (b) SEM image of first step fiber after chemical etching
process. Chalcogenide glass tube is successfully obtained.

(a) (b)

Figure 3.15: Optical microscopy image of (a) a bundle of first step fibers after
rubbing with emery. (b) a first step fiber after rubbing with emery. Polymer at
the core and the jacket and tube chalcogenide glass are successfully obtained.
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(a) (b)

Figure 3.16: (a) Optical microscopy image of unsuccessful spheres obtained by
fluid instability from heated first step fiber. Also some successful spheres are
obtained. (b) Optical microscopy image of the successful spheres after burying to
resin-hardener solution and cutting by microtome. Successful spheres are made
of only chalcogenide glass without polymer in the core.

(a) (b)

Figure 3.17: (a) SEM image of the second step fibers after chemical etching
process. Uniformity of fibers are shown. (b) SEM image of the second step fibers
as chalcogenide glass tubes after successful chemical etching process.
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Figure 3.18: SEM image of the second step fiber with different magnifications
after burying to resin-hardener solution and cutting by microtome. Uniformity
of fiber array is shown.

Figure 3.19: SEM images of the second step spheres obtained by in-fiber fluid
instability process after burying to resin-hardener solution and cutting with mi-
crotome. Spheres that have polymer core which is encapsulated by chalcogenide
glass are successfully obtained.
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(a) (b)

Figure 3.20: (a) SEM images of the second step spheres obtained by in-fiber fluid
instability after chemical etching process. (b) SEM image of the second step
sphere that has diameter less than 2 micrometers can show also the core polymer
that is encapsulated by chalcogenide glass.
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5  μm 2 μm

500 nm

50 μm

500 nm

Figure 3.21: SEM images with different magnifications of third step fibers after
chemical etching process. Uniformity is shown.
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20 μm 5 μm

1 μm 500 nm

Figure 3.22: SEM image of the third step fiber with different magnifications after
burying to resin-hardener solution and cutting by microtome. Uniformity of fiber
array is shown.

40 μm 5 μm

Figure 3.23: SEM images of the third step spheres obtained by in-fiber fluid
instability process after burying to resin-hardener solution and cutting with mi-
crotome. Spheres that have polymer at the core which is encapsulated by chalco-
genide glass are successfully obtained.
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2 μm 500 nm 200 nm

Figure 3.24: SEM images of the third step spheres obtained by in-fiber fluid
instability after chemical etching process.

1 μm 500 nm

Figure 3.25: SEM images with different magnifications of the third step fibers as
chalcogenide glass tubes after successful chemical etching process.
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50 μm 30 μm

5 μm 2 μm

Figure 3.26: SEM images that shows interesting behaviour of third step spheres.
Small spheres are hold on each other to form much bigger spheres.
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Chapter 4

Scattering From Small Particles:

Structural Coloration of

Nano-Structures

4.1 Structural Coloration

Coloration not from light-dye interaction but from the diffraction of light from

a material that has periodic or quasi-periodic structure in the scale of the wave-

length of light is called structural coloration [52]. While in nature, structural

coloration can be observed extensively as in mother-of-pearl, peacock feathers,

many kind of bugs and birds [6] it can also be successively imitated in the labo-

ratory with variety of methods [53] (Figure 4.1).

Structural colors are considered to originate light diffraction by thin film in-

terference, multilayer interference, diffraction grating, photonic crystals and light

scattering [4].

When light falls on to a thin film coating, structural colors are observed due

to the interference of reflected light beam from air-film surface and film-based

material surface constructively when 2n2dcosθ2 = mλ where n2 is the refractive
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(a) (b)

Figure 4.1: (a) Structural color in nature, mother of pearl, an opal, a peacock
feather and a beetle (b) polymer films with structural colors created by edge
induced rotational shearing by Finlayson et al. Scale bars are 3 centimeters [52].

index of film, d is the film thickness, θ2 is the angle of refraction, m is an integer

and λ is wavelength of light (Figure 4.2).

(a) (b)

Figure 4.2: (a) scheme that illustrates thin film interference. (b) Structural
coloration of oil layer on the water due to thin film interference.

If the coating is not a thin film coating but a multilayer coating which is

an iterative coating of two different refractive index materials with two different

thicknesses, similarly we see the structural coloration in the case of constructive

interference if 2(nAdAcosθA + nBdBcosθB) = mλ (Figure 4.3).

Diffraction gratings which is commonly used in optics such as in monochro-

mators, spectrometers and lasers, is an optical element that splits and diffract

light because of its periodic structure. Structural colors are obtained because of
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Figure 4.3: A scheme that illustrates multilayer interference.

diffraction of the light beams (Figure 4.4).

(a) (b)

Figure 4.4: (a) Diffraction grating that splits light. (b) The compact disc can act
as a grating and produce iridescent reflections.

Another component that creates structural coloration is photonic crystals. A

phonic crystal is a periodic optical nano-structure in 1D, 2D or 3D that affects the

motion of photons in the similar manner with ionic lattices that effects motion

of electrons (Figure 4.5).

The last known method related to the structural coloration is light scattering

from materials with the sizes comparable to the wavelength of light. In chapter

2 and the following sections of this work this method is widely described.
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(a)

(b)

Figure 4.5: (a) Illustration 1D,2D and 3D photonic crystals [54] (b) An opal that
is a natural phonic crystal.

4.2 Analytical Solutions: Mie Theory

The scattering efficiency for light is defined as [36]

Qsca(x) =
1

x

∞∑
n=−∞

(|a2n|+ |b2n|) (4.1)

where an and bn are scattering coefficients which we can estimate for nano-

spheres by solving the 8 equations in chapter 2 from Equation 2.80 to Equation

2.87. For simplicity we took µ = µ1 = µ2.

an =
ψn(y)[ψ′n(m2y)− AnX ′n(m2y)]−m2ψ

′
n(y)[ψn(m2y)− AnXn(m2y)]

ξn(y)[ψ′n(m2y)− AnX ′n(m2y)]−m2ξ′n(y)[ψn(m2y)− AnXn(m2y)]
(4.2)

bn =
m2ψn(y)[ψ′n(m2y)−BnX

′
n(m2y)]− ψ′n(y)[ψn(m2y)−BnXn(m2y)]

m2ξn(y)[ψ′n(m2y)−BnX ′n(m2y)]− ξ′n(y)[ψn(m2y)−BnXn(m2y)]
(4.3)

where
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An =
m2ψn(m2x)ψ′n(m1x)−m1ψ

′
n(m2x)ψn(m1x)

m2Xn(m2x)ψ′n(m1x)−m1X ′n(m2x)ψn(m1x)
(4.4)

Bn =
m2ψn(m1x)ψ′n(m2x)−m1ψn(m2x)ψ′n(m1x)

m2X ′n(m2x)ψn(m1x)−m1Xn(m2x)ψ′n(m1x)
(4.5)

Scattering efficiency for nano-spheres (Figure 4.6) estimated using MATLAB

code attached to the appendix. For core radius equal or smaller than 25nm, there

is no coloration. Between 30 nm to 60 nm almost all visible spectrum scanned

and from 60 nm to 112.5 nm, dominating color is red. Since our average spheres

has 100 nm core radius. We expect to see dominating red color.

Scattering coefficients for nano-wires follows. Here |a2n| presents TE polar-

ization case while |b2n| presents TM polarization case and |a2n| + |b2n| term in the

scattering efficiency belongs to unpolarized light.

an =
J ′n(y)D1 − Jn(y)C1

H
′(1)
n (y)D1 −H(1)

n (y)C1

(4.6)

bn =
J ′n(y)C2 − Jn(y)D2

H
′(1)
n (y)C2 −H(1)

n (y)D2

(4.7)

where

C1 = m2Y
′
n(ym2) +m2

Y1
J1
J ′n(ym2) (4.8)

D1 = m2
2Yn(ym2) +m2

2

Y1
J1
Jn(ym2) (4.9)

C2 = m2Jn(ym2) +m2
J2
Y2
Yn(ym2) (4.10)

D2 = m2
2J
′
n(ym2) +m2

2

J2
Y2
Y ′n(ym2) (4.11)

53



where

J1 = m1Jn(xm1)J
′
n(xm2)−m2Jn(xm2)J

′
n(xm1) (4.12)

Y1 = m2Yn(xm2)J
′
n(xm1)−m1Jn(xm1)Y

′
n(xm2) (4.13)

J2 = m2Jn(xm2)−
m2

2

m1

Jn(xm1)
J ′n(xm2)

J ′n(xm1)
(4.14)

Y2 =
m2

2

m1

Jn(xm1)
Y ′n(xm2)

J ′n(xm1)
−m2Yn(xm2) (4.15)

Scattering efficiency for nano-wires due to TE, TM polarized (Figure 4.7) and

unpolarized (Figure 4.8) light cases are estimated using MATLAB code attached

to the appendix. For TE polarized light, at 25 nm core radius there is no clear

coloration, at 50 nm and 75 nm core radius there is linearly decreasing scatter-

ing efficiency behavior from violet to red colors so dominating color is violet, at

100 nm core radius scattering efficiency for violet is also decreasing and dominat-

ing color shifted to light blue-green color. For TM polarized light, at 25 nm and

50 nm core radiuses scattering efficiency is dominated by red color. At 75 nm

and 100 nm core radius while dominating peak goes off to the visible spectrum

from red side, secondary dominating peak determines color from all spectrum.

For unpolarized light, at 25 nm and 50 nm core radius red color dominates, at

75 nm and 100 nm core radius again highest peak stands at reddish colors but

scattering efficiency for other colors are also strong. Since our nano-wires has

radius between 50 nm and 75 nm, we expect to see every color but red color

intensity must be stronger.
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4.3 Numerical Calculations Based on Finite Dif-

ference Time Domain Simulations

Using FDTD method, scattering efficiency is simulated for both nano-wire (Figure

4.9) and nano-sphere (Figure 4.10) cases. For nano-wires, we expect to have

stronger scattering efficiency in TM case from our estimations by MATLAB and

in the FDTD simulations we achieved the same result. Similar to MATLAB

results, for TM polarized light, scattering efficiency is initially dominated by red

color with increasing core radius while for TE case dominating color initially was

violet. As we expect, dominating peak goes off to the visible spectrum from red

side for TM case and then secondary dominating peak scans other colors and

for TE case we stars to see all colors with comparable scattering efficiencies for

increasing core radius values.

For nano-spheres, results are also similar with MATLAB results. For core

radius values smaller than 30 nm there is no coloration. From 30 nm to 100 nm

all visible spectrum scanned from violet to red by first dominating scattering

efficiency peak and when it goes off from the red side, secondary dominating

peak scans visible spectrum from 100 nm to 150 nm. Since our average sized

spheres has 100 nm radius, we expect to see dominating red color.

4.4 Observation of Structural Coloration in

Large-Area Nano-Wires and Nano-Spheres

Structural coloration can be observed in third step fibers even without microscopy.

Right after fiber drawing process, first and second step fibers did not change their

colors but third step fibers become reddish (Figure 4.11). When chemical etching

process takes place, optical microscopy images of third step fibers are taken.

Coloration is observed both from bundle (Figure 4.13) and from single standing

nano-wires (Figure 4.12). Also third step fibers are exposed temperature to obtain

third step spheres. Since during the heating process diameters of spheres increases
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nearly two times of original fiber diameters, colors from smaller sizes are lost.

Decreasing sizes cause structural coloration to shift to violet side while increasing

sizes cause shifting to red side. Therefore our third step spheres are shifted to

red side and only red color is observed as expected from MATLAB and FDTD

simulation results (Figure 4.14).
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R=50 nm R=62.5 nm

R=75 nm R=87.5 nm

R=100 nm R=112.5 nm

R=25 nm R=37.5 nm

Figure 4.6: Graphics showing scattering efficiency and wavelength relation for
different core radius values of nano-spheres. For core radius equal or smaller
than 25 nm, there is no coloration. Between 30 nm to 60 nm almost all visible
spectrum scanned and from 60 nm to 112.5 nm, dominating color is red.
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R=25 nm

R=50 nm

R=75 nm

R=100 nm R=100 nm

R=75 nm

R=25 nm

R=50 nm

Figure 4.7: Graphics showing scattering efficiency and wavelength relation for
different core radius values of nano-wires in both TE and TM polarized light
cases.
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R=25 nm

R=50 nm

R=75 nm

R=100 nm

Figure 4.8: Graphics showing scattering efficiency and wavelength relation for
different core radius values of nano-wires in unpolarized light case.
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Figure 4.9: FDTD simulation results for nano-wires in TE and TM polarized
light case. Results are similar with MATLAB results.

Figure 4.10: FDTD simulation results for nano-spheres. Results are similar with
MATLAB results.
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Figure 4.11: Bare fibers after fiber drawing process. (a) First step fibers. (b)
Second step fibers. (c) third step fibers. Coloration of third step fibers can be
observed even with bare eye.

Figure 4.12: An image shows structural coloration from single standing third step
fibers. All colors can be seen.

61



Figure 4.13: An image shows structural coloration from bundle of third step
fibers. While dominating color is red, all colors can be seen as expected.

Figure 4.14: An image shows in-fiber structural coloration of third step spheres
with different magnifications. Dominating red color can be seen.
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Chapter 5

Summary and Outlook

Present work includes novel methods to produce nano-structures and theoreti-

cal background and observation of structural coloration based on scattering of

light from produced structures in sizes comparable with the wavelength of light.

Theoretical work is done by solving the wave equation to describe initial, inter-

nal and scattering electromagnetic fields for a linear, isotropic and homogeneous

medium in cylindrical and spherical geometries. Structural coloration is observed

for nano-structures in the form of core-shell nano-wires and nano-spheres that

are produced by ISR and in-fiber fluid instability based on Plateau-Rayleigh in-

stability methods.

Uniform and size controlled kilometers of long core-shell nano-wires are pro-

duced by a novel production method, ISR. First a cylindrical preform is prepared

using polyether sulfone (PES) polymer rod in the core, As2Se3 chalcogenide glass

tube as a cladding part and again PES polymer as an encapsulation jacket. Af-

ter consolidation process preform is drown at the fiber tower to obtain first step

fibers. A second preform is prepared using a bundle of first step fibers as a

core and PES as an encapsulation jacket. Second step fibers are obtained by

drawing the second preform and similarly a bundle of second step fibers used to

obtain third step fibers. Reducing the size with three steps and getting rid of

the encapsulation jacket by chemical etching with dicloromethane (DCM) solu-

tion, polymer core chalcogenide glass fibers with average diameter of 130nm are
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obtained. Fibers are characterized by both longitudinal and cross-section images

by scanning electron microscopy (SEM).

Sample fibers from all three steps are exposed to temperature near the melt-

ing temperature of As2Se3 chalcogenide glass. Based on the Plateau-Rayleigh

instability effect, melted glass tries to form spheres inside the fibers. For second

and third steps, chalcogenide glass spheres encapsulating polymer core are ob-

tained but for the case of first step fibers, because of larger diameters compared

to other steps, glass cannot apply enough force to the core polymer and successful

spheres cannot be obtained. Spheres are characterized taking free standing and

cross-section images by scanning electron microscopy (SEM).

Based on the theoretical calculations, MATLAB code that estimates the scat-

tering behaviour of nano-wires and nano-spheres is written. Results are compared

to the FDTD (Finite Domain Time Difference) simulations. As expected from

theoretical results and simulations, structural coloration of nano-wires and nano-

spheres are observed by dark field optical microscopy images.

5.1 Future Works

Microchannel Plate Detectors

A microchannel plate detector is a component used in detection of particles

that multiplies photons as in photomultiplier tubes. The basic element of de-

vice is microchannel plate which is made from highly resistive material of nearly

2 mm thickness with regular array of densely distributed microchannels lying

from one face to other (Figure 5.1). Then a layer of material that has high sec-

ondary electron emission [55] as magnesium oxide (MgO), beryllium oxide (BeO)

or gallium phosphide (GaP) is coated in the microchannels by ALD (Atomic

Layer Deposition) method. When a photon rips an electron from material and

by applied voltage difference causes electric field along microchannels, ripped

electron is accelerated through microchannels colliding with inner surface and for

each collision electron rips other electrons due to the secondary electron emission
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property of coated material. This process iteratively continue to the other side of

the microchannel and around 106 gain obtained. Finally using phosphor screen,

multiplied photons obtained by multiplied electrons [56].

30 μm

t

15 μm

Figure 5.1: An image showing microchannel plate with different magnifications.

ISR technique provides the ability to produce uniform, cheap, long and con-

trollable sized fiber arrays. Also our work proved that chemical etching of polymer

with dicloromethane solution is achieved even for third step fibers that has nearly

100nm polymer core radius. Based on these results, production of microchannel

plates can be accomplished by appropriate design and materials. For instance,

first step fibers can be obtained using PVDF (Polyvinylidene Fluoride) polymer

which is not effected by dicloromethane solution as a thin cladding and PC (Poly-

carbonate) polymer in the core. Second step fibers can be obtained using first

step fibers in the core and PVDF polymer as a thin cladding and similarly after

producing third step fibers we can obtain fiber arrays with intended fiber sizes

due to the size reduction factor that we can control. A bundle of third step fibers

can be consolidated and with chemical etching microchannel plate design can be

achieved.

Supercontinuum Generation

Supercontinuum generation is simply a broadening of a pump beam by a

collection of nonlinear effects (Figure 5.2 and 5.3). Chalcogenide glasses have
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high nonlinear effects and supercontinuum generation can be achieved in tapered

chalcogenide glass core-shell fibers [57] [58] [59]. Second or third step fibers pro-

duced by ISR technique can be used as an alternative way to tapering mechanism

and since ISR results not only fiber but fiber arrays, stronger supercontinuum ef-

fect can be obtained.

Figure 5.2: A typical supercontinuum spectrum. The blue line is the spectrum of
the pump source while the red line is the resulting broadened spectrum generated
after propagating through the fiber.
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Figure 5.3: An image that shows propagation of laser pulses in a micro-structured
optical fiber. The input is near infrared laser light is not visible before entry into
the fiber and generates wavelengths covering the visible spectrum.
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Appendix A

MATLAB Codes

Nano-sphere scattering efficiency estimation code

clear all;

clc;

m1=1.65;

m2=3.25;

nm=1*10^(-9);

a=100*nm;

b=a*1.33;

z=200*nm:5*nm:1000*nm;

for t=1:length(z)

clc;

x=2*pi*a/z(t);

y=2*pi*b/z(t);

An=(m2*m2*x*sqrt(pi/(2*m2*x))*besselj(0.5,m2*x)*m1*x

*sqrt(pi/(2*m1*x))*(besselj(-0.5,x*m1)-besselj(1.5,x*m1))

-m1*m1*x*sqrt(pi/(2*m1*x))*besselj(0.5,m1*x)*m2*x

*sqrt(pi/(2*m2*x))*(besselj(-0.5,x*m2)-besselj(1.5,x*m2)))

\(m2*(-m2)*x*sqrt(pi/(2*m2*x))*bessely(0.5,m2*x)*m1*x

*sqrt(pi/(2*m1*x))*(besselj(-0.5,x*m1)-besselj(1.5,x*m1))

74



-m1*m1*x*sqrt(pi/(2*m1*x))*besselj(0.5,m1*x)*(-m2)*x

*sqrt(pi/(2*m2*x))*(bessely(-0.5,x*m2)-bessely(1.5,x*m2)));

Bn=(m2*m1*x*sqrt(pi/(2*m1*x))*besselj(0.5,m1*x)*m2*x

*sqrt(pi/(2*m2*x))*(besselj(-0.5,x*m2)-besselj(1.5,x*m2))

-m1*m2*x*sqrt(pi/(2*m2*x))*besselj(0.5,m2*x)*m1*x

*sqrt(pi/(2*m1*x))*(besselj(-0.5,x*m1)-besselj(1.5,x*m1)))

\((-m1)*(-m2)*x*sqrt(pi/(2*m2*x))*bessely(0.5,m2*x)*m1*x

*sqrt(pi/(2*m1*x))*(besselj(-0.5,x*m1)-besselj(1.5,x*m1))

+m2*m1*x*sqrt(pi/(2*m1*x))*besselj(0.5,m1*x)*(-m2)*x

*sqrt(pi/(2*m2*x))*(bessely(-0.5,x*m2)-bessely(1.5,x*m2)));

an(1)=(abs((y*sqrt(pi/(2*y))*besselj(0.5,y)*(m2*y

*sqrt(pi/(2*m2*y))*(besselj(-0.5,y*m2)-besselj(1.5,y*m2))

-An*(-m2)*y*sqrt(pi/(2*m2*y))*(bessely(-0.5,y*m2)

-bessely(1.5,y*m2)))-m2*y*sqrt(pi/(2*y))*(besselj(-0.5,y)

-besselj(1.5,y))*(y*m2*sqrt(pi/(2*y*m2))*besselj(0.5,m2*y)

-An*(-m2)*y*sqrt(pi/(2*m2*y))*bessely(0.5,m2*y)))

/((y*sqrt(pi/(2*y)))*(besselj(0.5,y)+i*bessely(0.5,y))

*(m2*y*sqrt(pi/(2*m2*y))*(besselj(-0.5,y*m2)-besselj(1.5,y*m2))

-An*(-m2)*y*sqrt(pi/(2*m2*y))*(bessely(-0.5,y*m2)

-bessely(1.5,y*m2)))-m2*y*sqrt(pi/(2*y))*((besselj(-0.5,y)

-besselj(1.5,y))+i*((bessely(-0.5,y)-bessely(1.5,y))))

*(y*m2*sqrt(pi/(2*y*m2))*besselj(0.5,m2*y)-An*(-m2)*y

*sqrt(pi/(2*m2*y))*bessely(0.5,m2*y))))).^2;

bn(1)=(abs((m2*y*sqrt(pi/(2*y))*besselj(0.5,y)*(m2*y

*sqrt(pi/(2*m2*y))*(besselj(-0.5,y*m2)-besselj(1.5,y*m2))

-Bn*(-m2)*y*sqrt(pi/(2*m2*y))*(bessely(-0.5,y*m2)

-bessely(1.5,y*m2)))-y*sqrt(pi/(2*y))*(besselj(-0.5,y)

-besselj(1.5,y))*(y*m2*sqrt(pi/(2*y*m2))*besselj(0.5,m2*y)

-Bn*(-m2)*y*sqrt(pi/(2*m2*y))*bessely(0.5,m2*y)))/

((m2*y*sqrt(pi/(2*y)))*(besselj(0.5,y)+i*bessely(0.5,y))
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*(m2*y*sqrt(pi/(2*m2*y))*(besselj(-0.5,y*m2)-besselj(1.5,y*m2))

-Bn*(-m2)*y*sqrt(pi/(2*m2*y))*(bessely(-0.5,y*m2)

-bessely(1.5,y*m2)))-y*sqrt(pi/(2*y))*((besselj(-0.5,y)

-besselj(1.5,y))+i*((bessely(-0.5,y)-bessely(1.5,y))))

*(y*m2*sqrt(pi/(2*y*m2))*besselj(0.5,m2*y)-Bn*(-m2)*y

*sqrt(pi/(2*m2*y))*bessely(0.5,m2*y))))).^2;

for u=2:51

An=(m2*m2*x*sqrt(pi/(2*m2*x))*besselj(u-0.5,m2*x)*m1*x

*sqrt(pi/(2*m1*x))*(besselj(u-1.5,x*m1)-besselj(u+0.5,x*m1))

-m1*m1*x*sqrt(pi/(2*m1*x))*besselj(u-0.5,m1*x)*m2*x

*sqrt(pi/(2*m2*x))*(besselj(u-1.5,x*m2)-besselj(u+0.5,x*m2)))

\(m2*(-m2)*x*sqrt(pi/(2*m2*x))*bessely(u-0.5,m2*x)*m1*x

*sqrt(pi/(2*m1*x))*(besselj(u-1.5,x*m1)-besselj(u+0.5,x*m1))

-m1*m1*x*sqrt(pi/(2*m1*x))*besselj(u-0.5,m1*x)*(-m2)*x

*sqrt(pi/(2*m2*x))*(bessely(u-1.5,x*m2)-bessely(u+0.5,x*m2)));

Bn=(m2*m1*x*sqrt(pi/(2*m1*x))*besselj(u-0.5,m1*x)*m2*x

*sqrt(pi/(2*m2*x))*(besselj(u-1.5,x*m2)-besselj(u+0.5,x*m2))

-m1*m2*x*sqrt(pi/(2*m2*x))*besselj(u-0.5,m2*x)*m1*x

*sqrt(pi/(2*m1*x))*(besselj(u-1.5,x*m1)-besselj(u+0.5,x*m1)))

\((-m1)*(-m2)*x*sqrt(pi/(2*m2*x))*bessely(u-0.5,m2*x)*m1*x

*sqrt(pi/(2*m1*x))*(besselj(u-1.5,x*m1)-besselj(u+0.5,x*m1))

+m2*m1*x*sqrt(pi/(2*m1*x))*besselj(u-0.5,m1*x)*(-m2)*x

*sqrt(pi/(2*m2*x))*(bessely(u-1.5,x*m2)-bessely(u+0.5,x*m2)));

an(u)=(abs((y*sqrt(pi/(2*y))*besselj(u-0.5,y)*(m2*y

*sqrt(pi/(2*m2*y))*(besselj(u-1.5,y*m2)-besselj(u+0.5,y*m2))

-An*(-m2)*y*sqrt(pi/(2*m2*y))*(bessely(u-1.5,y*m2)

-bessely(u+0.5,y*m2)))-m2*y*sqrt(pi/(2*y))*(besselj(u-1.5,y)

-besselj(u+0.5,y))*(y*m2*sqrt(pi/(2*y*m2))*besselj(u-0.5,m2*y)

-An*(-m2)*y*sqrt(pi/(2*m2*y))*bessely(u-0.5,m2*y)))
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/((y*sqrt(pi/(2*y)))*(besselj(u-0.5,y)+i*bessely(u-0.5,y))

*(m2*y*sqrt(pi/(2*m2*y))*(besselj(u-1.5,y*m2)-besselj(u+0.5,y*m2))

-An*(-m2)*y*sqrt(pi/(2*m2*y))*(bessely(u-1.5,y*m2)

-bessely(u+0.5,y*m2)))-m2*y*sqrt(pi/(2*y))*((besselj(u-1.5,y)

-besselj(u+0.5,y))+i*((bessely(u-1.5,y)-bessely(u+0.5,y))))

*(y*m2*sqrt(pi/(2*y*m2))*besselj(u-0.5,m2*y)-An*(-m2)*y

*sqrt(pi/(2*m2*y))*bessely(u-0.5,m2*y))))).^2;

bn(u)=(abs((m2*y*sqrt(pi/(2*y))*besselj(u-0.5,y)

*(m2*y*sqrt(pi/(2*m2*y))*(besselj(u-1.5,y*m2)-besselj(u+0.5,y*m2))

-Bn*(-m2)*y*sqrt(pi/(2*m2*y))*(bessely(u-1.5,y*m2)

-bessely(u+0.5,y*m2)))-y*sqrt(pi/(2*y))*(besselj(u-1.5,y)

-besselj(u+0.5,y))*(y*m2*sqrt(pi/(2*y*m2))*besselj(u-0.5,m2*y)

-Bn*(-m2)*y*sqrt(pi/(2*m2*y))*bessely(u-0.5,m2*y)))/

((m2*y*sqrt(pi/(2*y)))*(besselj(u-0.5,y)+i*bessely(u-0.5,y))

*(m2*y*sqrt(pi/(2*m2*y))*(besselj(u-1.5,y*m2)-besselj(u+0.5,y*m2))

-Bn*(-m2)*y*sqrt(pi/(2*m2*y))*(bessely(u-1.5,y*m2)

-bessely(u+0.5,y*m2)))-y*sqrt(pi/(2*y))*((besselj(u-1.5,y)

-besselj(u+0.5,y))+i*((bessely(u-1.5,y)-bessely(u+0.5,y))))

*(y*m2*sqrt(pi/(2*y*m2))*besselj(u-0.5,m2*y)-Bn*(-m2)*y

*sqrt(pi/(2*m2*y))*bessely(u-0.5,m2*y))))).^2;

an(u)=an(u)+an(u-1);

bn(u)=bn(u)+bn(u-1);

end;

an(t)=an(u);

bn(t)=bn(u);

q(t)=2*(an(t)+bn(t))./x;

end;

figure

plot(z,q);
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Nano-wire scattering efficiency estimation code

TM case

clear all;

clc;

m1=1.65;

m2=3.25;

nm=1*10^(-9);

a=150*nm;

b=a*1.5;

z=200*nm:5*nm:1000*nm;

for t=1:length(z)

clc;

x=2*pi*a/z(t);

y=2*pi*b/z(t);

J=m2*besselj(0,x*m2)-(m2^3/m1^2)*besselj(0,x*m1)*(besselj(-1,x*m2)

-besselj(1,x*m2))/(besselj(-1,x*m1)-besselj(1,x*m1));

Y=(m2^3/m1^2)*besselj(0,x*m1)*(bessely(-1,x*m2)-bessely(1,x*m2))

/(besselj(-1,x*m1)-besselj(1,x*m1))-m2*bessely(0,x*m2);

C=m2*besselj(0,y*m2)+m2*(J/Y)*(bessely(0,y*m2));

D=(m2^3)*(besselj(-1,y*m2)-besselj(1,y*m2))+(m2^3)*(J/Y)*

(bessely(-1,y*m2)-bessely(1,y*m2));

bn(1)=(abs((C*(besselj(-1,y)-besselj(1,y))-besselj(0,y)*D)

/(C*(besselh(-1,y)-besselh(1,y))-besselh(0,y)*D))).^2;

for u=2:51

J=m2*besselj(u-1,x*m2)-(m2^3/m1^2)*besselj(u-1,x*m1)*(besselj(u-2,x*m2)

-besselj(u,x*m2))/(besselj(u-2,x*m1)-besselj(u,x*m1));

Y=(m2^3/m1^2)*besselj(u-1,x*m1)*(bessely(u-2,x*m2)-bessely(u,x*m2))
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/(besselj(u-2,x*m1)-besselj(u,x*m1))-m2*bessely(u-1,x*m2);

C=m2*besselj(u-1,y*m2)+m2*(J/Y)*(bessely(u-1,y*m2));

D=(m2^3)*(besselj(u-2,y*m2)-besselj(u,y*m2))+(m2^3)*(J/Y)

*(bessely(u-2,y*m2)-bessely(u,y*m2));

bn(u)=bn(u-1)+2*(abs((C*(besselj(u-2,y)-besselj(u,y))-besselj(u-1,y)*D)

/(C*(besselh(u-2,y)-besselh(u,y))-besselh(u-1,y)*D))).^2;

end;

bn(t)=bn(u);

q(t)=2*bn(t)./x;

end;

figure

plot(z,q);

TE case

clear all;

clc;

m1=1.65;

m2=3.25;

nm=1*10^(-9);

a=150*nm;

b=a*1.5;

z=200*nm:5*nm:1000*nm;

for t=1:length(z)

clc;

x=2*pi*a/z(t);

y=2*pi*b/z(t);

J=m1*m2*besselj(0,x*m1)*(besselj(-1,x*m2)-besselj(1,x*m2))

-m2*m1*besselj(0,x*m2)*(besselj(-1,x*m1)-besselj(1,x*m1));

79



Y=m2*m1*bessely(0,x*m2)*(besselj(-1,x*m1)-besselj(1,x*m1))

-m1*m2*besselj(0,x*m1)*(bessely(-1,x*m2)-bessely(1,x*m2));

D=(m2^2)*(Y/J)*besselj(0,y*m2)+(m2^2)*(bessely(0,y*m2));

C=(m2^2)*(Y/J)*(besselj(-1,y*m2)-besselj(1,y*m2))

+(m2^2)*(bessely(-1,y*m2)-bessely(1,y*m2));

an(1)=(abs((D*(besselj(-1,y)-besselj(1,y))-besselj(0,y)*C)

/(D*(besselh(-1,y)-besselh(1,y))-besselh(0,y)*C))).^2;

for u=2:51

J=m1*m2*besselj(u-1,x*m1)*(besselj(u-2,x*m2)-besselj(u,x*m2))

-m2*m1*besselj(u-1,x*m2)*(besselj(u-2,x*m1)-besselj(u,x*m1));

Y=m2*m1*bessely(u-1,x*m2)*(besselj(u-2,x*m1)-besselj(u,x*m1))

-m1*m2*besselj(u-1,x*m1)*(bessely(u-2,x*m2)-bessely(u,x*m2));

D=(m2^2)*(Y/J)*besselj(u-1,y*m2)+(m2^2)*(bessely(u-1,y*m2));

C=(m2^2)*(Y/J)*(besselj(u-2,y*m2)-besselj(u,y*m2))+(m2^2)

*(bessely(u-2,y*m2)-bessely(u,y*m2));

an(u)=an(u-1)+2*(abs((D*(besselj(u-2,y)-besselj(u,y))-besselj(u-1,y)*C)

/(D*(besselh(u-2,y)-besselh(u,y))-besselh(u-1,y)*C))).^2;

end;

an(t)=an(u);

q(t)=2*an(t)./x;

end;

figure

plot(z,q);
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